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Abstract—The particle filter offers a general numerical tool to approximate the posterior density function
for the state in nonlinear and non-Gaussian filtering problems. While the particle filter is fairly easy to
implement and tune, its main drawback is that it is quite computer intensive, with the computational com-
plexity increasing quickly with the state dimension. One remedy to this problem is to marginalize out the
states appearing linearly in the dynamics. The result is that one Kalman filter is associated with each
particle. Filtering block has been developed with the help of which navigation data received from UAV is
filtered. UAV motion with camera on board has been conducted and photos have been captured from it.
Photos have been processed by OpenSurf method, with the help of which feature points has been detected,
filtered and compared with previous image. Result of research shows that with help of comparing of two
neighboring images we can reconstruct relief above which UAV flew.

Index Terms—Particle filter; marginalized particle filter; filtering block; correlation extreme navigation

system.
I. INTRODUCTION

Central task of any system of navigation is defin-
ing as precisely as possible the coordinates of the
UAV. Significant number of algorithms is developed
to solve it, based mainly on the famous recursive
algorithm for the Kalman filter, and effectively im-
plemented on a digital computer. Nevertheless we
still cannot consider this problem finally solved.
This is because of many reasons, and one of the
most important is the non-linear nature of the motion
models and measurement in many practical prob-
lems. Nonlinearity occurs for many factors — due to
the nonlinear connection of coordinate systems used
in the equations of the observed object and the mea-
surer, because of the nonlinear nature of the equa-
tions themselves. Nonlinear problems arise in the
construction of adaptive systems, implemented by
the inclusion of uncertain parameters in the esti-
mated state vector. Extreme simplification of the
situation ignoring and nonlinearities may significant-
ly reduce the efficiency of coordinates, altitude and
velocities estimation algorithms in the real systems.
In practice, non-linear estimation algorithms are ap-
plied, but in general, limited to simple options such
as extended Kalman filter.

More powerful algorithms exist at the same time
but are rarely used because they require large com-
putational cost. However, the rapid growth during
the past years of computer technology opportunities
enables us to use many of these algorithms in prac-
tice. So, marginalized particle filtering algorithm [1]

is developed. It is a powerful tool, which successful-
ly solves problem of nonlinearity by separating of
linear and nonlinear parts and does not require high
computing performance (Fig. 1).
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Fig. 1. Marginalized particle filter algorithm
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II. PROBLEM STATEMENT

The nonlinear non-Gaussian filtering problem
consists of recursively computing the posterior
probability density function of the state vector in a
general discrete-time state-space model, given the
observed measurements. Such a general model can
be formulated as

Xis1 :f(xt,VVt), Y Zh(xt,et).

Here, y, is the measurement at time ¢,x, is the
state variable, w, is the process noise, e, is the
measurement noise, and f,k# are two arbitrary
nonlinear functions. The two noise densities p,
and p, are independent and are assumed to be

known.

The posterior density where

px 1Y)
Y :{y,.}izo is given by the following general

t

measurement recursion:

P(y, |x1)p(x1 |Y171)
p(y 1Y)

p(rl¥)=[p(v %) p(x | Y., )dx,,
and the following time recursion:

p(xt|Yt): Jp(x,+| |xt)p(xt |Yt)dxt’

p(x|Y)=

initiated by p(x0|K 1): p(x,). For linear Gaussian

models, the integrals can be solved analytically with
a finite dimensional representation. This leads to the
Kalman filter recursions, where the mean and the
covariance matrix of the state are propagated. More
generally, no finite dimensional representation of the
posterior density exists. Thus, several numerical
approximations of the integrals have been proposed.
A recent important contribution is to use simulation
based methods from mathematical statistics,
sequential Monte Carlo methods, commonly referred
to as particle filters [2].

Integrated navigation is used as a motivation and
application example. Briefly, the integrated
navigation system in them Swedish fighter aircraft
Gripen consists of an inertial navigation system
(INS), a terrain-aided positioning (TAP) system and
an integration filter. This filter fuses the information
from INS with the information from TAP [3], [4].
Terrain-aided positioning is currently based on a
point-mass filter, where it is also demonstrated that
the performance is quite good, close to the Cramér—
Rao lower bound. Field tests conducted by the Swe-
dish air force have confirmed the good precision.

Alternatives based on the extended Kalman filter
have been investigated but have been shown to be
inferior particularly in the transient phase (the EKF
requires the gradient of the terrain profile, which is
unambiguous only very locally). The point-mass
filter is likely to be changed to a marginalized
particle filter in the future for Gripen. TAP and INS
are the primary sensors. Secondary sensors (GPS
and so on) are used only when available and reliable.
The current terrain-aided positioning filter has three
states (horizontal position and heading), while the
integrated navigation system estimates the
accelerometer and gyroscope errors and some other
states. The integration filter is currently based on a
Kalman filter with 27 states, taking INS and TAP as
primary input signals.

The Kalman filter that is used for integrated
navigation requires Gaussian variables. However,
TAP gives a multi-modal un-symmetric distribution
in the Kalman filter measurement equation and it has
to be approximated with a Gaussian distribution
before being used in the Kalman filter. This results
in severe performance degradation in many cases,
and is a common cause for filter divergence and sys-
tem reinitialization.

The appealing new strategy is to merge the two
state vectors into one, and solve integrated
navigation and terrain-aided positioning in one filter.
This filter should include all 27 states, which effec-
tively would prevent application of the particle filter.
However, the state equation is almost linear, and
only three states enter the measurement equation
nonlinearly, namely horizontal position and heading.
Once linearization (and the use of EKF) is
absolutely ruled out, marginalization would be the
only way to overcome the computational
complexity. More generally, as soon as there is a
linear sub-structure available in the general model
this can be utilized in order to obtain better estimates
and possibly reduces the computational demand. The
basic idea is to partition the state vector as

%
X, = 2 |0
X

' denotes the

p with
conditionally linear dynamics and x denotes the
nonlinear state variable.

Using Bayes’ theorem we can then marginalize
out the linear state variables and estimate them using
the Kalman filter, which is the optimal filter for this
case. The nonlinear state variables are estimated us-
ing the particle filter. This technique is sometimes
referred to as Rao-Blackwellization. The variance of

where x state variable
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the estimates obtained from the standard particle
filter can be decreased by exploiting linear substruc-
tures in the model. The corresponding variables are
marginalized out and estimated using an optimal
linear filter. This is the main idea behind the
marginalized particle filter.

Speeded Up Robust Features (SURF) is a local
feature detector and descriptor that can be used for
tasks such as object recognition or registration or
classification or 3D reconstruction. It is partly in-
spired by the scale-invariant feature transform
(SIFT) descriptor. The standard version of SURF is
several times faster than SIFT and claimed by its
authors to be more robust against different image
transformations than SIFT.

To detect interest points, SURF uses an integer
approximation of the determinant of Hessian blob
detector, which can be computed with 3 integer op-
erations using a precomputed integral image. Its fea-
ture descriptor is based on the sum of the Haar wave-
let response around the point of interest. These can
also be computed with the aid of the integral image.

The SIFT approach uses cascaded filters to detect
scale-invariant characteristic points, where the dif-
ference of Gaussians (DoG) is calculated on rescaled
images progressively. In SURF, square-shaped fil-
ters are used as an approximation of Gaussian
smoothing. Filtering the image with a square is
much faster if the integral image is used, which is
defined as:

x Y
S(x,y) =22 10, ).
i=0 j=0

The sum of the original image within a rectangle
can be evaluated quickly using the integral image,
requiring four evaluations at the corners of the rec-
tangle.

Speeded Up Robust Features uses a blob detector
based on the Hessian matrix to find points of inter-
est. The determinant of the Hessian matrix is used as
a measure of local change around the point and
points are chosen where this determinant is maxim-
al. In contrast to the Hessian—Laplacian detector by
Mikolajzyk and Schmid, SURF also uses the deter-
minant of the Hessian for selecting the scale, as it is
done by Lindeberg. Given a point p = (x, y) in an
image /, the Hessian matrix H(p, o) at given point
and scale o, is defined as follows:

Lo(p.o) Ly (p,o)
H(JF{QAR® LM@GJ'

where L_(p,o) etc. are the second-order derivatives
of the grayscale image.

The box filter of size 9x9 is an approximation of
a Gaussian with 6 = 1.2 and represents the lowest
level (highest spatial resolution) for blob-response
maps.

Consider the example of a system consisting of
one or two cameras and three-dimensional space of a
point M. Some space forms the point M on the pro-
jected images m; and m,. If you know the internal
and external characteristics of the stereo system, you
can restore the position of the point M in the three-
dimensional space. Determination of compliance
between the projections m; and m;, for all pixels a
stereo pair of images is a key task sterecophoto-
grammetry, as well as one of the most studied prob-
lems in computer vision. The value of d = x,—x; is
the parallax of the projection of the point M on the
stereo pair images. This value is also called the dis-
parity. An ordered set of values for all pixels’ paral-
lax stereo pair is called disparity map, stereo corres-
pondence or depth map. In the prior art stereo cor-
respondence problem finding it may have different
names, such as "the establishment of pixel corres-
pondences on stereo pairs", "identification of corres-
ponding pixels’ stereo image", "identification of
pixels’ stereo" and others (Fig. 2).
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Fig. 2. The model of formation of a stereo pair of images

The main practical goal of the search pixel cor-
respondences on stereo pairs — obtaining a three-
dimensional model of the projection space, embo-
died in the two pictures. For the model of the forma-
tion of a stereo pair of images, presented in the in-
troduction, the equality:

/B _, IB

X, — X, d

Z=f-

b

where f'is camera focal length; B is stereo magnitude
(the distance between photo points); d = x,—x, is the
difference in the ordinate corresponding pixels in the
images of the stereo pair, Z is the distance from the
shooting plane to the point of the space M. It should
be noted that the difference between the projected
coordinate d must be converted into the same units
as the focal length and the stereo, for example, in the
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subway. Knowing the physical size and its resolu-
tion photo matrices, you can calculate the size of one
pixel pc in meters, which is then used to convert the
pixel values of the disparity in meters. Thus, when
the parameters of the optical system (f, B, pc) are
known the task of restoring the relief is reduced to
the establishment of pixel correspondences accord-
ing to the mentioned relationship [5].

III. PROBLEM SOLUTION

In this work motion of UAV which was flying
above one of the Kyiv region was performed. Cam-
era was fixed to UAV and after flight execution we
have got a full flight video as well as navigation log
with such parameters as latitude, longitude, GPS
altitude, velocity, ground speed, acceleration, angu-
lar acceleration, barometric altitude, roll, pitch, yaw.
Figure 3 shows the flight path of UAV.

-

Fig. 3. Flight path of UAV

We have chosen a segment of the whole trajecto-
ry with constant height and velocity (Fig. 4).

Fig. 4. Chosen segment of trajectory

The task is to compute the height as well as data
about relief of the ground UAV flies over with the
help of comparing images captured from video using
SURF method. There was only 1 camera on board so
we had to compare two frames, which are chosen
with some constant time interval in order to use ste-
reo pair technique of image depth obtaining.

So we have selected 10 pairs of images with
1 sec interval. Following figure represents two pho-
tos, which was computed.

With the help of SURF method 12125 feature
points were detected. All points are shown in Fig. 5.

Fig. 5. Pair of compared images

Feature points were found on both photos and in
the following figures we can see how points were
tracked from frame to frame (Figs 6 and 7).

Fig. 7. Tracked feature points

Now it is possible to reconstruct relief of flyover
point as well as to obtain height. In following figure
we can see reconstructed 3D terrain with shown
positions of camera (Fig. 8).

Fig. 8. Reconstructed relief

Figure 9 shows the heights of 50 random points
on image.
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Fig. 9. Height of 50 random points

From the last it is clear that UAV is flying on av-
erage height ~360 m. Also we can see that if point
lies on building the height value differs a lot from
average. It is natural, because algorithm defines dis-
tance to points not only on the ground, but on the
buildings as well.

In order to verify if height determination is true
we used GPS altitude from navigation log. It shows
altitude above sea level, so we just subtracted
ground elevation (in this region ground elevation
equals 160 m) from GPS altitude and received
height. Figure 10 shows the graphs of height calcu-
lated by program and height obtained from naviga-
tion log.
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Fig. 10. Measured and calculated heights

In Fig. 11 it is clearly seen that height calculated
by program has to be filtered. So we applied margi-
nalized particle filtering algorithm. During particle
filtering a priori data was taken from satellite and
calculated data from stereoscopic measurements.
Particle filtering gave us level of reliability to each
new calculated value. As a result more accurate val-
ue of height has been obtained.
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Fig. 11. Filtered height

As we can see in Fig. 10 filtered value of height
is more close to measured one and we can say that
marginalized particle filter works well. The differ-
ence in error between true and filtered heights is
represented in Fig. 12.
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Fig. 12. Errors of estimation

It is obvious that error of estimation with filter
applying is significantly less than error of estimation
without filter applying.

IV.  CONCLUSIONS

In this work marginalized particle filtering block
has been realized on practice by filtering data re-
ceived from video which was recorded from UAV
flying under one of the Kyiv regions. Height of
UAYV was defined by comparing two images taken
with 1 sec interval simulating stereo pair technique
with the help of SURF method. The relief UAV was
flying above was reconstructed as well. Errors of
estimation were also computed by comparing calcu-
lated height and height received from navigation log.

Program has been developed and researched in
Matlab programming language. Program was suc-
cessfully tested; results of program execution can be
considered as reliable. Block can be implemented in
unmanned vehicles development.
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